Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways.

نویسندگان

  • Biao Jin
  • Massimo Rolle
چکیده

The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degrada...

متن کامل

Joint interpretation of enantiomer and stable isotope fractionation for chiral pesticides degradation.

Chiral pesticides are important contaminants affecting the health and functioning of aquatic systems. The combination of stable isotope and enantiomer analysis techniques has been recently proposed to better characterize the fate of these contaminants in natural and engineered settings. We introduce a modeling approach with the aim of unifying and integrating the interpretation of isotopic and ...

متن کامل

Elucidating Turnover Pathways of Bioactive Small Molecules by Isotopomer Analysis: The Persistent Organic Pollutant DDT

The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment...

متن کامل

Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.

Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compou...

متن کامل

Fate of Micropollutants During Pyrolysis of Biosolids

FATE OF MICROPOLLUTANTS DURING PYROLYSIS OF BIOSOLIDS Approximately 250 tons of organic micropollutants, including pharmaceuticals, antimicrobials, and hormones, are discharged to the environment during land application of wastewater biosolids. Reusing wastewater biosolids is vital to the sustainability of wastewater treatment, but current treatment processes do not remove micropollutants from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental pollution

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2016